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We consider solving three-dimensional electromagnetic problems in parameter
regimes where the quasi-static approximation applies, the permeability is constant,
the conductivity may vary significantly, and the range of frequencies is moderate. The
difficulties encountered include handling solution discontinuities across interfaces
and accelerating convergence of traditional iterative methods for the solution of
the linear systems of algebraic equations that arise when discretizing Maxwell’s
equations in the frequency domain. We use a potential-current formulation (A, φ, Ĵ)
with a Coulomb gauge. The potentialsA andφ decompose the electric fieldE into
components in the active and null spaces of the∇× operator. We develop a finite
volume discretization on a staggered grid that naturally employs harmonic averages
for the conductivity at cell faces. After discretization, we eliminate the current and
the resulting large, sparse, linear system of equations has a block structure that
is diagonally dominant, allowing an efficient solution with preconditioned Krylov
space methods. A particularly efficient algorithm results from the combination of
BICGSTAB and an incomplete LU-decomposition. We demonstrate the efficacy of
our method in several numerical experiments.c© 2000 Academic Press
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1. INTRODUCTION

Fast, accurate solutions of 3-D electromagnetic equations are required to simulate re-
sponses from geophysical surveys and also for solving the electromagnetic inverse problem.
Difficulties arise in attempting to find corresponding three-dimensional numerical solutions.
These difficulties include handling regions of (almost) vanishing conductivity, handling dif-
ferent resolutions in different parts of the spatial domain, handling the multiple scale lengths
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over which the physical properties can vary, and handling regions of highly varying conduc-
tivity, magnetic permeability, or electrical permittivity where jumps in solution properties
across cell interfaces may occur.

We consider Maxwell’s equations in the frequency domain over a frequency range which
excludes high frequencies (in a sense to be made more precise following (1) below). The
permeability is assumed constant. The piecewise smooth conductivity structureσ partitions
the spatial domain into disjoint subdomains and, thus, normal components of the electric
field may be discontinuous across interfaces between distinct materials. We consider a do-
main involving both ground and air [12, 22, 25]. This particular model is used in geophysical
surveys where artificial or natural sources induce currents in conducting bodies.

A major obstacle in modeling such phenomena is that the conductivity in the air essen-
tially vanishes. From an analytic perspective, the specific subset of Maxwell’s equations
used typically forms an almost-singular system in regions of almost-vanishing conductivity.
Even in the ground (where the conductivity is not close to vanishing), the resulting differ-
ential operator is strongly coupled and not strongly elliptic [7]. Finding effective methods
for solving the algebraic equations arising from careful, conservative discretizations of
Maxwell’s equations (as in [18, 25, 29]) has proved elusive in practice.

In [1], we addressed this concern by employing a Helmholtz decomposition first, using a
potential formulation with a Coulomb gauge to obtain a system of strongly elliptic, weakly
coupled differential equations. This change of variables (used in [4, 12, 21, 24] among others)
splits the electric field into components in the active and null spaces of the∇× operator.
Using a vertex-based discretization on a simple non-staggered grid, the resulting large,
sparse algebraic systems were solved using preconditioned Krylov space methods [2, 27].
Combining BICGSTAB and a preconditioner comprising an incomplete LU-decomposition
of the dominant system blocks resulted in a particularly efficient algorithm.

The discretization method in [1] is sufficiently accurate ifσ is continuous or contains
jumps that are small in magnitude. In the more general case which allows for a significantly
discontinuous conductivity profile, it is difficult to devise an accurate discretization that
preserves the benefits of the rapid solution techniques for the linear equations. This leads
us to introduce the current density into the equations as an ultimately intermediate variable;
the new analytic system is then discretized using a finite-volume technique on a staggered
grid. The method is akin to mixed-hybrid finite element methods [6, 23, 33].

A staggered discretization for Maxwell’s equations (originally proposed by Yee [29, 35])
has been considered in contexts similar to ours in [22, 25].1 In this discretization, the
Cartesian components of the electric fieldE and the magnetic fieldH are represented at
distinct locations on the spatial grid (cf. [5]). Given a rectangular, three-dimensional grid,
the components ofE prescribed in [22, 25] are parallel to the edges of the cells and the
components ofH are orthogonal to the centers of the faces of the cells. This avoids the
need to doubly define the (discontinuous) components ofE in the normal directions to cell
faces because the components ofE used in this representation are tangential to the faces
of the cells. However, when using a potential formulation to speed up the iterative solution
of the algebraic equations, this placement of the field values becomes cumbersome. The
complication is further increased if permeability is allowed to vary.

1 We call it the Yee discretization, or method, even though Yee originally proposed his method for the time
domain problem.
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Thus, we develop a finite-volume method on a staggered grid using vector potentials,
scalar potentials, and generalized current densities as dependent variables. In Section 2,
we develop the corresponding system of partial differential equations (PDEs). This system
is amenable to discretization using a finite-volume technique described in Section 3. For
this discretization, the values of the components of the vector fields are associated with the
centers of the faces of the cells and the values of the scalar potential are associated with cell
centers. The resulting scheme naturally employs harmonic averages for the conductivityσ

on cell faces; it closely relates to a careful, efficient extension of the traditional Yee method
and retains various conservation properties for the fields.

We briefly describe the application of Krylov space methods to solve the system of
algebraic equations in Section 4, complementing the description and numerical tests in [1].
Related methods were considered in [10, 11]. We use incomplete LU-decomposition, which
is a powerful preconditioner in the case of diagonally dominant linear systems. The system’s
diagonal dominance is a direct consequence of our analytic formulation.

Finally, we present the results of numerical experiments in Section 5. We construct a
synthetic example in 3D and demonstrate the accuracy of the method, even with large
jump discontinuities in conductivity and even with coarse grids. We also demonstrate the
rather significant efficiency gain of our method by comparing it to a method closer to
the traditional Yee discretization using similar preconditioned Krylov space methods but
without the potential reformulation [25]. As a rough general indication, our experimental
MATLAB code requires about two minutes on a SPARC 10 workstation to solve the problem
on a 323 grid. We also test the code on a geophysical problem and compare our results with
those from another code.

We emphasize our view that the problem reformulation, the derivation of a suitable dis-
cretization scheme, and the design of a fast iterative solver are all parts of one design
process. Thus, the Helmholtz decomposition followed by a careful discretization allows the
construction of a simpler preconditioner for a standard Lanczos-type iteration. Others have
chosen to discretize (1) (or the corresponding time-domain equations) first, and then manip-
ulate the discrete equations [3, 5, 9], possibly with the view of designing a fast solver [17].
In the present setting our modular approach yields a complete scheme for fast 3D simulation,
which is easy for scientists and engineers to understand and implement.

2. FORMULATING THE ELECTROMAGNETIC PROBLEM

With a time-dependencee−iωt , Maxwell’s equations in the frequency domain are

∇ × E− ıωµH = 0, (1a)

∇ × H − (σ − ıωε)E = Js, (1b)

∇ · (εE) = ρ, (1c)

∇ · (µH) = 0, (1d)

whereµ is the magnetic permeability,ε is the electrical permittivity,Js is a known source
current density, andρ is the (unknown) volume density of free charges. In our present
work, we assume thatµ>0 is constant and known. The physical propertiesε >0 andσ ≥ 0
can vary with position and are assumed bounded and piecewise smooth. We restrict the
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frequency range under consideration so thatµεω2L2¿ 1, whereL is a typical length scale.
The electric fieldE and the magnetic fieldH are the unknowns in the forward modeling
equations (1a, b), with the charge densityρ defined by (1c).

The system (1) is defined over an unbounded domain. However, in practice, we assume
that (1) holds in a bounded subdomainÄ ⊂ IR3, and some combination of Dirichlet and
Neumann boundary conditions (BCs) is imposed on the boundary∂Ä ofÄ. It is well known
that the existence of a unique, piecewise smooth solutionE is guaranteed for a sufficiently
smooth source and a wide variety of such BCs [5, 20, 30]. We thus assume thatE has
bounded second derivatives everywhere except in directions normal to material interfaces,
and return to the choice of BCs towards the end of this section and in Section 5.

Often in the literature, (1a) is divided byµ, the∇× operator is applied, and (1b) is
substituted into the resulting expression to obtain a second-order system of PDEs for the
electric fieldE, namely

∇ × (µ−1∇ × E)− ıωσ̂E = ıωJs, (2)

where

σ̂ := σ − ıωε.

However, for reasons indicated in Section 1, we decomposeE into componentsA (spanning
the active space of the∇× operator) and∇φ (spanning the null space of the∇× operator).
The resulting decomposition inÄ is

E = A+∇φ, (3a)

∇ · A = 0, (3b)

where (3b) is known as theCoulomb gauge condition[12]. The choice of Coulomb gauge
for our work is important because it greatly simplifies the differential equations to be solved.

To get an idea of how smooth these potential fields are, consider the conditionsA andφ
must satisfy at the interface between distinct conducting media. We find these conditions by
integrating over infinitesimal Gaussian pill-boxes or rectangular loops at the interface (see,
e.g., [30]). With (A1, φ1, σ̂1, ε1) and (A2, φ2, σ̂2, ε2) denoting values of the corresponding
quantities on opposing sides of the interface, we have

n× (A1− A2) = 0, (4a)

n · (A1− A2) = 0, (4b)

n · (ε1∇φ1− ε2∇φ2) = ρs, (4c)

n · (σ̂1(A1+∇φ1)− σ̂2(A2+∇φ2)) = 0, (4d)

wheren is a unit vector normal to the interface andρs in (4c) is a surface charge density.
We define thegeneralized current densitŷJ to be

Ĵ = σ̂E = (σ − ıωε)E. (5)

The conditions (4) and the differential equations (1) imply thatĴ · n is continuous, butE · n
is not. Moreover,∂φ

∂n inherits the discontinuity ofE · n, while A is continuous, and both
∇ · A and∇ × A are bounded (cf. [14]).
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We can substitute (3a) into (2), and for constantµ we obtain

∇ × ∇ × A− ıωµσ̂ (A+∇φ) = ıωµJs.

SinceA is divergence-free,

∇ × ∇ × A ≡ −∇2A in H−1(Ä)3 (6)

(see Remark 3.8 and Theorem 3.5 in [14]). Using this identity and substituting (3b), we
obtain

∇2A+ ıωµσ̂ (A+∇φ) = −ıωµJs. (7)

Notice we cannot substitute∇ ×∇ ×E=−∇2E+∇(∇ · E) directly because the fieldE is
discontinuous in its normal component across interfaces between media with different con-
ductivities. Also, ifµ varies, then (6) cannot be applied and (7) does not hold. A generaliza-
tion can be found [16]; however, the method proposed here is particularly fast, taking ad-
vantage of the sparsity afforded by the discretization of (7), which is not obtained unlessµ

is constant.
To get a diagonally dominant system, we can apply the operator∇· to (7), thereby

obtaining a diffusion equation forφ (as in [1, 4, 12, 21]). However, ˆσA · n andσ̂∇φ · n can
be discontinuous even thoughĴ · n is continuous at an interface. Therefore, differentiating
the components ˆσA andσ̂∇φ of Ĵ individually should be avoided. We can, however, take
the divergence of̂J at an interface without fear. This yields the (inhomogeneous) system of
equations

∇2A+ ıωµĴ = −ıωµJs, (8a)

σ̂ (A+∇φ)− Ĵ = 0, (8b)

∇ · Ĵ = −∇ · Js. (8c)

The introduction ofĴ into (8) is akin to mixed finite element methods [8] which are com-
monly used for highly discontinuous problems.

Notice, although (3b) is left out of (8), this gauge condition is satisfied by the exact
solution of (8) provided it holds at the boundaries. We avoid discretizing (3b) directly.

A simple set of BCs for the system of PDEs (8) is given by

−(∇ × A)× n|∂Ä = 0, (9a)

A · n|∂Ä = 0, (9b)

∂φ

∂n

∣∣∣
∂Ä
= 0, (9c)∫

Ä

φ dV = 0. (9d)

These conditions yield a unique solution(A, φ, Ĵ) for the system (8), (9). In particular, the
Coulomb gauge condition (3b) is satisfied inÄ, see [16].
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We use (9) for problems with sources that have compact support inÄ (bearing in mind
thatÄ approximates an infinite domain)2. But problems with sources which do not have
compact support (such as in the magnetotelluric case [34]) require other choices of BCs.
See Section 5.

3. DERIVING A DISCRETIZATION

Solving the forward problem is a major bottleneck for electromagnetic inverse problems in
geophysical prospecting [32]. This is the application that motivates us here. For the ensuing
data inversion, one envisions a 3D tensorproduct grid with the conductivity constant (or
slowly varying) in each cell, but potentially varying widely between cells. Thus, we consider
here a discretization on such a rectangular grid. For extensions to more complex geometries,
see [18, 19], or consider mixed finite elements [5, 8, 17].

To derive a discretization for the system of PDEs (8), consider first the grid in thex-
direction. There areNx cells and henceNx + 1 vertices. These are denoted as

Ǟx :={xi+1/2 : x1/2 < x3/2 < · · · < xNx+1/2, i = 0, . . . , Nx
}
, (10a)

with the corresponding dual grid defined as

Ǟx′ := {xi : i = 0, . . . , Nx + 1}, where

xi :=


x1/2, i = 0;
1
2

(
xi−1/2+ xi+1/2

)
, i = 1, . . . , Nx;

xNx+1/2, i = Nx + 1

.
(10b)

The dual gridǞx′ gives thex-coordinates of the centers of the cells of the grid. The primary
and dual grid spacings are given by

hx
a := xa+1/2− xa−1/2 (a = 1/2, 1, 3/2, . . . , Nx, Nx + 1/2). (10c)

One-dimensional grids are similarly defined in they- andz-directions, respectively yielding
Ǟy (with Ny+ 1 points),Ǟz (with Nz+ 1 points), and the corresponding dual gridsǞy′

andǞz′ as in (10b). The grid spacingshy
b andhz

c are as in (10c). We also define the boxes

Va,b,c :=[xa− 1
2
, xa+ 1

2

]× [yb− 1
2
, yb+ 1

2

]× [zc− 1
2
, zc+ 1

2

]
,

|Va,b,c| := hx
a hy

b hz
c, (a = 1/2, 1, . . . , Nx + 1/2; .b = 1/2, 1, . . . , Ny + 1/2;

c = 1/2, 1, . . . , Nz+ 1/2)

which are the finite-volumes over which the individual equations of (8) are integrated.
Thus, the domain for the discretization is essentially the grid

Ǟh := Ǟx × Ǟy × Ǟz.

2 This idea is similar to the implementation of open BCs in the context of computational fluid dynamic, see
[15, 31].
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TABLE 1

The Discrete Grid Functions: Each Scalar Field Is Approximated by the Grid

Functions at Points Slightly Staggered in Each Cell of the Grid

Ax

i+ 1
2 , j,k
≈ Ax

(
xi+ 1

2
, yj , zk

)
Ĵx

i+ 1
2 , j,k
≈ Ĵx

(
xi+ 1

2
, yj , zk

)
Ay

i, j+ 1
2 ,k
≈ Ay

(
xi , yj+ 1

2
, zk

)
Ĵ y

i, j+ 1
2 ,k
≈ Ĵ y

(
xi , yj+ 1

2
, zk

)
Az

i, j,k+ 1
2
≈ Az

(
xi , yj , zk+ 1

2

)
Ĵz
i, j,k+ 1

2
≈ Ĵz

(
xi , yj , zk+ 1

2

)
φi, j,k ≈ φ(xi , yj , zk)

The vertices ofǞh are the corners ofNx NyNz boxes that constitute the cells of the grid
(as seen in Fig. 1). That is, the cellVi, j,k is the box with eight corners (xi± 1

2
, yj± 1

2
, zk± 1

2
)

and center (xi , yj , zk) (i = 1, . . . , Nx, j = 1, . . . , Ny, k= 1, . . . , Nz). The centers of the six
faces of the cellVi, j,k are the six points (xi± 1

2
, yj , zk), (xi , yj± 1

2
, zk), and (xi , yj , zk± 1

2
).

Furthermore, within each cellVi, j,k, the conductivityσ varies smoothly or is constant with
σ ≡ σi, j,k throughout the cell. However,σ may be discontinuous between adjacent cells.
The permittivityε is represented in the same way asσ (ie. withε≡ εi, j,k throughoutVi, j,k),
although the variations inε are much less than those inσ . Thus, the domain is composed
of blocks of distinct conducting materials.

Having defined the grid, we now identify where the grid functions approximatingA, Ĵ,
andφ are defined. Basically, both vector fieldsA andĴ are approximated in each cell using
the approximate values of the normal components of the fields at the center of each face.
The scalar fieldφ is approximated in each cell using the approximate value ofφ at the
center of the cell. DenotingA ≡ (Ax, Ay, Az)T andĴ≡ ( Ĵx, Ĵ y, Ĵz)T , the locations of the
grid functions are shown in Table 1 and Fig. 1.

To approximate (8c), we integrate at first over the boxVi, j,k using Gauss’ divergence
theorem

1

|Vi, j,k|
∫

Vi, j,k

∇ · Ĵ dV = 1

|Vi, j,k|
∫
∂Vi, j,k

Ĵ · n dS.

FIG. 1. The cellVi, j,k along with a cross-section. The cellVi, j,k corresponds to a block of conductive material
within whichσ ≈ σi, j,k.
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Using midpoint quadrature on each face to evaluate each of the surface integrals on the
right-hand side above, we find the discrete equation corresponding to (8c),

Ĵx
i+ 1

2 , j,k
− Ĵx

i− 1
2 , j,k

hx
i

+
Ĵ y

i, j+ 1
2 ,k
− Ĵ y

i, j− 1
2 ,k

hy
j

+
Ĵz

i, j,k+ 1
2
− Ĵz

i, j,k− 1
2

hz
k

+
sx
i+ 1

2 , j,k
− sx

i− 1
2 , j,k

hx
i

+
sy
i, j+ 1

2 ,k
− sy

i, j− 1
2 ,k

hy
j

+
sz
i, j,k+ 1

2
− sz

i, j,k− 1
2

hz
k

= 0, (11)

where we denoteJs = (sx, sy, sz)T .
Next, consider, say, thex-component of (8b), written as

∂φ

∂x
= −Ax + σ̂−1 Ĵx,

i.e., as an equality of possibly discontinuous quantities. Integrating this equation on the
line segment from(xi , yj , zk) to (xi+1, yj , zk), we cross a boundary between cells and
hence encounter possible discontinuities in ˆσ and ∂φ

∂x . However, integration is a smoothing
operation, so the result of this integration is well defined. We define theharmonic average
of the conductivity between the neighboring cells by

σ̂i+ 1
2 , j,k
= hx

i+ 1
2

(∫ xi+1

xi

σ̂−1(x, y, z) dx

)−1

. (12a)

If σ̂ is assumed to be constant over each cell, this integral evaluates to

σ̂i+ 1
2 , j,k
= hx

i+ 1
2

(
hx

i

2σ̂i, j,k
+ hx

i+1

2σ̂i+1, j,k

)−1

. (12b)

Then, the resulting approximation for thex-component of (8b) is

Ĵx
i+ 1

2 , j,k
= σ̂i+ 1

2 , j,k

(
Ax

i+ 1
2 , j,k
+ φi+1, j,k − φi, j,k

hx
i+ 1

2

)
. (12c)

The above derivation using harmonic—rather than arithmetic—averages is natural in
our approach upon application of numerical considerations alone (viz. integration rough
quantities). Using harmonic averages as indicated, becomes important in practice when
jumps by a few orders of magnitude in conductivity are present. Harmonic averaging is also
natural on physical grounds, as it corresponds to serial, rather than parallel, current flow
(see, e.g., [28]).

Using (12c) and similar expressions derived in they- andz-directions, we eliminatêJ
from (11) and obtain a discrete equation in which the dominant terms all involveφ. The
resulting stencil forφ has 7 points.

There are two ways to view the procedure of eliminatingĴ. First, it is an algebraic
manipulation (a Schur decomposition) which reduces the number of unknowns. Second,
the result of the elimination corresponds to a compact discretization of

∇ · (σ̂∇φ)+∇ · (σ̂A)=−∇ · Js. (13)
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However, this correspondence holds only if the terms on the left-hand side of (13) exist
(i.e., if σ̂ is smooth; for a similar idea in a different context, see [15]). Our discretization
yields a valid approximation for the solution of (8b)-(8c), even if the individual terms in
(13) are unbounded.

It is natural (although not necessary) to defineA at the same spatial locations whereĴ
is defined, as depicted in Fig. 1. The discretization of the components of (8a) is obtained
using a standard 7-point stencil to approximate the Laplacian operator or through a finite
volume discretization of

−∇ × ∇ × A+∇(∇ · A)+ ıωµĴ = −ıωµJs

(see [16]), which yields the same discrete equations. This completes the derivation of
the discretization for a general, tensor-product non-uniform grid. The same finite-volume
arguments are used to determine how Dirichlet or Neumann BCs fit into the stencils near
the boundaries. Our treatment of the BCs follows the one described by Fletcher [13].

In summary, the discretization of (8) on a uniform grid with spacinghx
i = hy

j = hz
k≡ h is

h−2
(

Ax
i+ 3

2 , j,k
+ Ax

i+ 1
2 , j+1,k

+ Ax
i+ 1

2 , j,k+1
+ Ax

i− 1
2 , j,k
+ Ax

i+ 1
2 , j−1,k

+ Ax
i+ 1

2 , j,k−1

− 6Ax
i+ 1

2 , j,k

)+ ıωµ Ĵx
i+ 1

2 , j,k
= −ıωµsx

i+ 1
2 , j,k

, (14a)

h−2
(

Ay
i+1, j+ 1

2 ,k
+ Ay

i, j+ 3
2 ,k
+ Ay

i, j+ 1
2 ,k+1
+ Ay

i−1, j+ 1
2 ,k
+ Ay

i, j− 1
2 ,k
+ Ay

i, j+ 1
2 ,k−1

− 6Ay
i, j+ 1

2 ,k

)+ ıωµ Ĵ y
i, j+ 1

2 ,k
= −ıωµsy

i, j+ 1
2 ,k
, (14b)

h−2
(

Az
i+1, j,k+ 1

2
+ Az

i, j+1,k+ 1
2
+ Az

i, j,k+ 3
2
+ Az

i−1, j,k+ 1
2
+ Az

i, j−1,k+ 1
2
+ Az

i, j,k− 1
2

− 6Az
i, j,k+ 1

2

)+ ıωµ Ĵz
i, j,k+ 1

2

= −ıωµsz
i, j,k+ 1

2
, (14c)

h−2
(
σ̂i+ 1

2 , j,k
(φi+1, j,k − φi, j,k)− σ̂i− 1

2 , j,k
(φi, j,k − φi−1, j,k)+ σ̂i, j+ 1

2 ,k
(φi, j+1,k − φi, j,k)

− σ̂i, j− 1
2 ,k
(φi, j,k − φi, j−1,k)+ σ̂i, j,k+ 1

2
(φi, j,k+1− φi, j,k

)− σ̂i, j,k− 1
2
(φi, j,k − φi, j,k−1)

)
+ h−1

(
σ̂i+ 1

2 , j,k
Ax

i+ 1
2 , j,k
+ σ̂i, j+ 1

2 ,k
Ay

i, j+ 1
2 ,k
+ σ̂i, j,k+ 1

2
Az

i, j,k+ 1
2
− σ̂i− 1

2 , j,k
Ax

i− 1
2 , j,k

− σ̂i, j− 1
2 ,k

Ay
i, j− 1

2 ,k
− σ̂i, j,k− 1

2
Az

i, j,k− 1
2

) = h−1
(
sx
i+ 1

2 , j,k
+ sy

i, j+ 1
2 ,k
+ sz

i, j,k+ 1
2

− sx
i− 1

2 , j,k
− sy

i, j− 1
2 ,k
− sz

i, j,k− 1
2

)
, (14d)

where the components ofĴ can be eliminated by

Ĵx
i+ 1

2 , j,k
= h−1σ̂i+ 1

2 , j,k
(φi+1, j,k − φi, j,k)+ σ̂i+ 1

2 , j,k
Ax

i+ 1
2 , j,k

, (14e)

Ĵ y
i, j+ 1

2 ,k
= h−1σ̂i, j+ 1

2 ,k
(φi, j+1,k − φi, j,k)+ σ̂i, j+ 1

2 ,k
Ay

i, j+ 1
2 ,k
, (14f)

Ĵz
i, j,k+ 1

2

= h−1σ̂i, j,k+ 1
2
(φi, j,k+1− φi, j,k)+ σ̂i, j,k+ 1

2
Az

i, j,k+ 1
2
. (14g)

The introduction ofĴ into the formulation (8) makes it easy to generate a point-wise
accurate approximation to the (possibly discontinuous) electric fieldE with our discretiza-
tion (14). Usually, the fieldsA andφ are computed solely for the purpose of calculatingE
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andH in post-processing; thus, computingE directly from (3a) (as suggested in [1, 12, 20,
21, 24]) involves a loss of accuracy due to numerical differentiation to obtain a possibly
discontinuous∇φ. We avoid this loss of accuracy by calculatingĴ (which is continuous)
at the grid points whereA is defined using (14e)–(14g), and then determiningE using (5).
Thus, the electric field can be accurately determined at either side of the boundary, which
separates media having different conductivities.

3.1. Conservation of Vector Identities and Relationship with Yee’s Method

On the (non-uniform) staggered grid, we can define natural discrete difference operators
that involve only “short” difference quotients:∇ · h as used in (11) for∇ · Ĵ; ∇h, as used in
(12c), for∇φ,∇2

h, as used in (14), for∇2A; and∇ × h, as used in (16) below. It is then easy
to verify that the following discrete vector identities hold in the grid’s interior, reproducing
the continuous vector identities (cf. [9, 18]):

(∇ × h)∇h = 0, (15a)

(∇ · h)(∇ × h) = 0, (15b)

∇h(∇ · h)− (∇ × h)(∇ × h) = ∇2
h, (15c)

∇ · h8 = 0 ⇒ ∇ · h∇2
h8 = 0. (15d)

In electromagnetic modeling, it is common to use Yee’s method [35]. As mentioned in
the introduction, most implementations of this method define the tangential component of
E along the edges of a grid cell (or a finite volume) and the normal components ofH at the
facial interfaces; see, e.g., [25]. However, this is not a fundamental requirement. In fact, our
method is more closely associated with a modification of Yee’s discretization with normal
components ofE defined on the cell faces and tangential components ofH defined on the
edges. This requires appropriate field substitutions and definitions of conductivity. We do
so below and relate the resulting equations to those from our derivation.

Consider Yee’s discretization, applied to (1a, b) for a uniform grid as in (14). The place-
ment of the various discrete solution components on the cell is depicted in Fig. 2.

FIG. 2. Staggered discretization ofE andH in three dimensions.
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The centered discretization is

h−1
(
Ez

i, j+1,k+1/2− Ez
i, j,k+1/2− Ey

i, j+1/2,k+1+ Ey
i, j+1/2,k

)− ıωµH x
i, j+1/2,k+1/2= 0, (16a)

h−1
(
Ex

i+1/2, j,k+1− Ex
i+1/2, j,k − Ez

i+1, j,k+1/2+ Ez
i, j,k+1/2

)− ıωµH y
i+1/2, j,k+1/2= 0, (16b)

h−1
(
Ey

i+1, j+1/2,k− Ey
i, j+1/2,k− Ex

i+1/2, j+1,k + Ex
i+1/2, j,k

)− ıωµH z
i+1/2, j+1/2,k= 0, (16c)

h−1
(
H z

i+1/2, j+1/2,k − H z
i+1/2, j−1/2,k − H y

i+1/2, j,k+1/2+ H y
i+1/2, j,k−1/2

)
− σ̂i+1/2, j,k Ex

i+1/2, j,k = sx
i+1/2, j,k, (16d)

h−1
(
H x

i, j+1/2,k+1/2− H x
i, j+1/2,k−1/2− H z

i+1/2, j+1/2,k + H z
i−1/2, j+1/2,k

)
− σ̂i, j+1/2,k Ey

i, j+1/2,k = sy
i, j+1/2,k, (16e)

h−1
(
H y

i+1/2, j,k+1/2− H y
i−1/2, j,k+1/2− H x

i, j+1/2,k+1/2+ H x
i, j−1/2,k+1/2

)
− σ̂i, j,k+1/2Ez

i, j,k+1/2 = sz
i, j,k+1/2. (16f)

In (16), we have not defined the quantities ˆσi+1/2, j,k, σ̂i, j+1/2,k, andσ̂i, j,k+1/2, nor have
we resolved the possible discontinuities inE · n across cells (for example,Ex

i+1/2, j,k may
have different limiting values in the cellVi, j,k and the cellVi+1, j,k). We now address both
these points using our previously introduced approach.

1. We can eliminate the components ofH unambiguously by substituting (16a)–(16c)
into (16d)–(16f). This algebraic elimination corresponds exactly to discretizing the second-
order system (2) inE. In particular, it is a compact discretization for each of the components
of E on the staggered grid.

2. Next, we introduce the decomposition (3). This resolves the ambiguity inE on the cell
faces in case of discontinuities and handles the null space of the∇× operator. The natural
discretization is

Ex
i+1/2, j,k = Ax

i+1/2, j,k + h−1(φi+1, j,k − φi, j,k),

Ey
i, j+1/2,k = Ay

i, j+1/2,k + h−1(φi, j+1,k − φi, j,k),

Ez
i, j,k+1/2 = Az

i, j,k+1/2+ h−1(φi, j,k+1− φi, j,k).

This leads to the staggered grid definition as in Fig. 1.
Substituting into (16), note that according to (15a), the contributions corresponding to
∇ × ∇φ vanish. Further, werequire

∇ · hAi, j,k = h−1
(

Ax
i+1/2, j,k − Ax

i−1/2, j,k + Ay
i, j+1/2,k − Ay

i, j−1/2,k

+ Az
i, j,k+1/2− Az

i, j,k−1/2

)= 0. (17)

Then, using (15d), we obtain our equations (14) from Yee’s method.
3. Finally, we are able to naturally, and carefully, derive an expression forσ on cell faces

using harmonic averages, as in (12).

Remember that in our method, we do not explicitly impose (17). However, these equations
are consistent with our discretization if the BCs with which the PDE system (8) is equipped
are such that (3b) is satisfied everywhere (as is the case with (9)). In such a case our
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discretization yields the same solution as Yee’s method with the definition (12) (which
holds even when∇φ is discontinuous). We have arrived at a correct way of extending Yee’s
method (16) in order to overcome both the presence of discontinuities inσ and the slow
convergence of iterative methods for the algebraic equations. If the BCs for (8) reproduce
(3b) only approximately, then the methods yield different solutions; see Section 5.

4. NUMERICAL SOLUTION OF THE DISCRETE SYSTEM

Even afterĴ is eliminated, the system (8) has four unknown scalar fields defined over a
three-dimensional domain. The resulting discrete system derived in Section 3 is typically
very large and sparse, so we use preconditioned Krylov space methods for its solution
[2, 27]. As in [1], the discretized equations can be written as

1
ωµ

H1 ı S1G1

1
ωµ

H2 ı S2G2

1
ωµ

H3 ı S3G3

D1S1 D2S2 D3S3 L




A1

A2

A3

φ

 =


b1

b2

b3

bφ

 . (18)

Here,H1, H2, andH3 are discretizations of the (complex) Helmholtz operators;(G1,G2,

G3)
T is a discretization of the operator∇; (D1, D2, D3) is a discretization of the operator

∇·; (S1, S2, S3) is a discretization of the operator ˆσ(·); and L is a discretization of the
operator∇ · (σ̂∇(·)). In this case,H1, H2, andH3 are distinct matrices due to the staggered
grid; this is a drawback compared to [1].

The block structure of the matrix in (18) holds for our staggered discretization (14), but not
for (16), nor for discretizations that directly involve (3b). The diagonal blocksH1, H2, H3,
andL are discretizations of second-order differential operators and are, therefore, the dom-
inant blocks of the system. Furthermore, although the system (18) is larger than the system
arising from the direct discretization of (2), it has roughly the same number of nonzero
entries because the discretization of the operator∇ × ∇× involves 13 points, whereas that
for ∇2 involves only 7 points.

As in [1], we solve (18) using BICGSTAB with a block incomplete-LU (ILU) precon-
ditioner [2]. A modest improvement can be made by separating the system (18) into its
real and imaginary parts, since the imaginary part appears only in the low-order terms
of (1). Furthermore, the real part of the Helmholtz operator corresponds to the dielectric
permittivity and the imaginary part corresponds to the conductivity. The result is the real
system 

Hε SεG −Sσ −SσG

DSσ DSσG DSε DSεG

Sσ SσG Hε SεG

−DSε −DSεG DSσ DSσG




Are

φre

Aim

φim

 =


bre

bφre

bim

bφim

 , (19)

where the matrixHε is the discretization of the 3D Helmholtz operator (which depends
on the permeability,ε, and the frequency,ω), Sσ and Sε are diagonal matrices that dis-
cretize the three components of the operatorsσ(·) andωε(·), andG andD are the discrete
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representations of∇ and∇·. In (19), the matrix blocks have the form

Hε = (ωµ)−1∇2
h + Sε, ∇2

h = diag
(∇2

x ,∇2
y,∇2

z

)
,

Sσ = diag(Sσ x, Sσ y, Sσz), Sε = diag(Sεx, Sεy, Sεz), (20)

G = (G1,G2,G3)
T , D = (D1, D2, D3).

In (20),∇2
p is the (discrete) Laplacian operator for thepth component of a vector field,

and Sεp and Sσp are likewise discrete approximations ofε I andσ I , respectively, on the
appropriate faces of the staggered grid (p= x, y, z).

For sufficiently fine grids, the Laplacian blocks are dominant in their respective rows
and columns, whence the system is diagonally dominant. The convergence of Krylov space
solvers relates directly to the diagonal dominance of the system (19). For the preconditioning
of the blocksH1, H2, andH3 of (18) or (19), we can use ILU(0), i.e., no fill-in allowed.
However, for the blocksDSσG, which are more complicated due to the discontinuities in
σ , we use ILU with threshold 10−3; see [27]. The ILU code we use is taken from [27] as
well.

5. NUMERICAL EXPERIMENTS AND RESULTS

For the calculations reported in this section, we assume the quasi-static approximation
holds, so ˆσ ≡ σ as in [1]. The boundary conditions (BCs) are different from (9) because we
attempt to model the magnetotelluric (MT) experiment [32]. This experiment involves fields
driven by a source that has no compact support in an unbounded domain. Upon considering
the approximate problem on a finite domainÄ, there are different ways to impose BCs on
the finite domain boundary,∂Ä, when modelling this experiment. For instance, in [22],E|∂Ä
is prescribed, while in [26],H andE are prescribed on different portions of the boundary.

In our modelling, we prescribe BCs directly onA andφ based on their physical inter-
pretation.3 We assume that there are no charge sources at infinity. Thus, for a sufficiently
large rectangular domain of the form

Ä := [−Lx, Lx] × [−L y, L y] × [−Lz, Lz]. (21)

φ arises only from charge accumulation at conductivity discontinuities which are well inside
Ä and far from its boundary. Therefore,∇φ|∂Ä≈ 0 and correspondinglyE|∂Ä≈A|∂Ä.

We require

∂φ

∂n

∣∣∣∣
∂Ä

= 0, (22a)

which guarantees a unique decomposition in (3) for a given electric field. In addition, set

∂A
∂x

∣∣∣∣
x=±Lx

= 0,
∂A
∂y

∣∣∣∣
y=±L y

= 0. (22b)

3 Recall from [1] thatφ is generated from accumulated charges whileA arises from time varying magnetic
fields.
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Corresponding to a plane wave in an MT experiment (which has a source without compact
support) we impose

A|z=±Lz = g(x, y,±Lz) (22c)

whereg is a known data function.
By fixing φ = 0 at one point on the boundary, or alternatively imposing (9d), the PDE

system (8), (22) is well posed. Note that (3b) no longer holds precisely, but‖∇ · A‖decreases
rapidly as the domainÄ is increased.

5.1. A Synthetic Problem

For low-frequency, diffusive problems involving finite discontinuities, we are not aware
of three-dimensional, closed form solutions of the system (8) reported in the literature.
Therefore, we generate a synthetic example that allows us to test many features of the
algorithm.

For the model domain we setLx = L y= Lz= 1 in (21). We define an analytic, quasi-static
conductivity function depending on a parametera,

σ̂ (x, y, z) ≡ σ(x, y, z) = ψa(x) ψa(y) ψa(z), (23a)

where

ψa(ξ) := tanh

(
a

(
ξ + 1

4

))
− tanh

(
a

(
ξ − 1

4

))
+ 1

100
. (23b)

The functionψa in (23b) varies slowly in [−1, 1] except nearξ =±0.25, where|ψ ′a| ≈ a;
thus, the parametera controls the steepness of effective “jumps” in ˆσ (see Fig. 3). For 0<

FIG. 3. The functionψa for various values ofa> 0: asa increases,ψa becomes steeper.
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a ≤ 1, σ̂ is not too steep, while fora ≥ 10,σ̂ is effectively discontinuous (like a conducting
block in a nonconducting material). Note that ˆσ varies over 7 orders of magnitude, roughly
from 10−6 to 8. The directions across which ˆσ varies rapidly align with the grid.

We next choose an electric field,

E =
(
−zy e−5(x2+y2+z2)

ψa(x)
,
−xz e−5(x2+y2+z2)

ψa(y)
,
−xy e−5(x2+y2+z2)

ψa(z)

)T

. (24)

Notice‖E(x, y, z)‖→0 as(x2+ y2+ z2)→∞. On the finite domain boundary‖E(x, y,
z)‖ is small: e.g. fora= 100, max∂Ä |E(x, y, z)|< 0.09, which we consider an acceptable
source of error. Also, for the grids used, with sufficiently large values ofa (say,a> 10),E
varies rapidly as if it has a jump discontinuity in the normal (but not tangential) directions
at the “interfaces” where ˆσ changes rapidly. On the other hand, the currentĴ= σ̂E varies
rapidly in its tangential components, but not in its normal components at the same interfaces.

We setµ= 4π · 10−7 H/m andg= 0. The diffusion numberωµσ̂ L2 ≈ 100 is typical in
a geophysical scenario in which the domain includes roughly seven skin depths. For the
source term, we now define

Js := (ıωµ)−1∇ × ∇ × E− σ̂E. (25)

The values of ˆσ on block boundaries are evaluated using harmonic averages, as in Section 3.
The source in (25) is not physically realistic, as it lacks compact support. However, this
example does provide a good test case approximating a highly discontinuous problem.

At this point we can generate the linear system (19) for a given frequencyω and find
an approximate solution(Ah, φh)

T . Unfortunately, we do not have closed-form expressions
for (A, φ), such that (3) holds. However, we can compute a pseudo-analytical solution by
solving on the same grid a similar finite volume discretization for the system

A+∇φ = E, (26a)

∇ · A = 0, (26b)

together with (22a), using the analyticE from (24) on the right-hand side of (26). The
differences between the numerical solutions of (19) and (26) are denoted byδA andδφ.

We present a summary of results in Table 2. In addition to‖δA‖ and‖δφ‖, we provide
‖δĴ‖ (the difference between the analytic and computed currents) and‖∇ ·A‖ (the residual
associated with (3b)). These differences are measured in the maximum norm and in the
normalized Euclidean 2-norm.

The results in Table 2 show that the solution error generally decreases likeh2 as the
grid is refined. Observe that the errors in the current (and therefore in the electric field) are
O(h2) becausêJ is computed point-wise from the discretization of (8b) with second-order
accuracy. Notice that the convergence rate does not change as the gradients in ˆσ increase
in magnitude, although a finer grid is needed for comparable accuracy when the layers
are sharper. This result implies that solving practical three-dimensional problems requires
a sufficiently dense mesh to get meaningful results. The analytic and computed currents
agree favorably as seen in Fig. 4. Only the real parts are presented because, for this example,
both the conductivity and the electric fields are real.
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TABLE 2

Synthetic Problem with Uniform Grids: Errors in the Computed Ĵ and∇ · A,

and Error Indicators δA and δφ

# cells h h2 # variables

83 .25 6.25e-2 4224
163 .125 1.56e-2 33280
323 .0625 3.9e-3 264192

Grid a M ‖δA‖ ‖δφ‖ ‖∇ · A‖ ‖δĴ‖

83 5 2.2 2.6e-1 2.9e-1 1.3e-1 9.2e-2 2.1e-2 7.8e-1 9.3e-2
163 0.5 7 3.9e-1 3.2e-2 3.8e-2 3.6e-3 6.8e-3 5.1e-4 1.8e-1 1.3e-2
323 12 7.8e-2 4.8e-3 9.3e-3 2.3e-3 2.4e-3 1.0e-4 1.0e-4 2.3e-3

83 5 2.2 2.7e-1 3.3e-1 1.6e-1 4.8e-2 4.6e-3 7.5e-1 8.8e-2
163 1 7 3.8e-1 3.2e-2 4.0e-2 4.1e-3 3.6e-3 2.7e-4 1.9e-1 1.4e-2
323 14 7.8e-2 4.8e-3 8.9e-3 1.8e-3 1.3e-3 5.6e-5 4.7e-2 2.3e-3

83 8 3.4 3.2e-1 4.9 3.5 5.9e-2 4.2e-3 2.7e-1 2.6e-2
163 10 11 2.7e-1 2.3e-2 2.6e-1 1.2e-1 3.2e-3 2.2e-4 9.5e-2 5.6e-3
323 22 6.5e-2 4.0e-3 4.5e-2 1.0e-2 1.3e-3 4.7e-5 2.0e-2 8.2e-4

83 8 16 2.3 20 5.6 2.4e-1 3.0e-2 2.3e-1 2.2e-1
163 100 12 9.0 6.9e-1 23 4.8 3.0e-1 2.8e-2 4.8e-1 2.6e-2
323 23 2.2 1.4e-1 2.2 2.0e-1 4.4e-1 2.3e-2 1.2e-1 8.5e-3

Note.The valueM is the number of iterations to convergence. Numbers in the left columns are measured in
‖ · ‖∞, and in the right columns in‖ · ‖2. The number of cells, the mesh spacingh, and the number of unknown
variables are provided at the top.

FIG. 4. Synthetic problem: the real parts of computed current,Ĵc, and the analytic current,̂Ja, through a
cross-section of the conductivity ˆσ .
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FIG. 5. Synthetic problem: the real parts of computed solutionsA andφ through a cross-section of conducti-
vity σ̂ .

Observe that of the error indicators in Table 2, the only true solution error isδĴ. The
measured norms for∇ · A, as well as the comparisons to the pseudo-analytical solution,
reflect the error in using a finite domain of unit length, as well as discretization errors. Where
a second-order improvement is observed ash is decreased, we know that the discretization
error dominates the finite-domain error.

The results of Table 2 are obtained using uniform grids. In particular, no special effort
is made to cluster grid points in regions where the gradient of the conductivity is high;
as such, the conductivity is essentially discontinuous on the scale of the resolution of the
uniform grids. The fact that we are able to obtain accurate solutions in spite of the presence
of discontinuities relates to our choice of formulation for the system of PDEs. The original
field E has discontinuities in the normal direction across interfaces, butA, φ, and Ĵ do
not. Figure 5 illustrates this fact with a plot of a line ofA andφ through the block of high
conductivity. Similar results are obtained in [24] (which usesA in a magnetostatic problem)
and in [20] (which usesH to handle discontinuities inσ andE to handle discontinuities
in µ).

Finally, asa increases, the Krylov space iterative methods require more iterations to
converge. Even so, the number of iterations needed to reduce the relative residual norm to
10−6 is very small compared with those reported in [25] (which uses standard Krylov-type
methods and preconditioners).

For our second experiment, we compare the discretization (14) to the modification of the
Yee discretization applied to the second-order system (2) (as described in Section 3.1). We
contrast the number of BICGSTAB iterations and the corresponding number of operations
(in gigaflops) needed to achieve a relative residual of 10−7 using each method. Since the
modified Yee method does not produce a diagonally dominant system, we use an SSOR
preconditioner with parameter value 1 for both methods, even though this does not show the



SIMULATION OF 3D ELECTROMAGNETIC PROBLEMS 167

TABLE 3

Comparison of (A, φ) and E Formulations: Iteration Counts and Computational Work

to Solve the Synthetic Problem Using BICGSTAB with SSOR Preconditioning

# of iterations # of operations

ω Grid (A, φ) E (A, φ) E

83 10 >105 0.031 N/A
100 163 18 >105 0.23 N/A

323 32 >105 14 N/A

83 9 1542 0.029 2.1
106 163 26 2576 0.31 20

323 42 5631 18 1200

discretization (14) at its best for low frequencies. The test problem is the synthetic model on
uniform grids witha = 100. The results are summarized in Table 3. Table 3 demonstrates
the rather substantial improvement that our method offers; at lower frequenciesω, this
improvement is more pronounced.

Note that the convergence of the iterative solver for the Yee method is very slow because
the source for this synthetic example is not divergence-free. The problem becomes more
severe when the frequencyω is lower. Similar results were reported in [25] but not in
[22], because the latter considers only magnetic sources which, unlike electric ones, are
divergence-free.

The grids in the first two experiments are uniform throughout the domain. Thus, for a third
experiment, we solve the synthetic problem on non-uniform grids that widen exponentially
towards the outer boundary. In one dimension, start with a uniform mesh on the interval
[−0.5, 0.5]. At each end of the full interval, append a subinterval 1.3 times wider than
the outermost subintervals. Repeat this process, padding the outside of the interval until
the interval covers [−1, 1]. Form a tensor-product grid in three dimensions from this non-
uniform one-dimensional grid. This non-uniform grid allows us to avoid discretizing finely
in regions where the solution does not vary much. We solve the synthetic problem on various
exponentially widening non-uniform meshes and record the results in Table 4. The results
in Table 4 indicate that the solution of (8b) is second-order accurate and that the number of
iterations needed for convergence of the Krylov space methods is not affected significantly
by the non-uniform grid.

The values for the discretization of∇ · A appearing in Tables 2 and 4 are nonzero, unlike
in (17). This discrepancy is due to the finite-domain error, which causes (3b) to be only
approximately satisfied by the discretized PDE system, as well as the iteration error (i.e.,
the Krylov iteration halts when the residual drops below a preset tolerance). Upon using the
BCs (9) instead of (22), the values of‖∇ · A‖ dropped significantly, depending now only
on the iteration tolerance; however, for the reported values ofL, a, andh, the error inδĴ
did not improve significantly.

We have also applied the method proposed in [1] to this synthetic model. Fora ≤ 1, the
results are comparable in accuracy and iteration counts. In that case, the method of [1] is
somewhat preferable, because the cost per iteration is cheaper and the discretization does
not involve a staggered grid, which can simplify programming considerably. However, as
a increases, the accuracy of the method in [1] deteriorates significantly, and the present
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TABLE 4

Synthetic Problem with Non-Uniform Grids: Errors in the Computed Ĵ and∇ ·A,

and Error Indicators δA and δφ

# cells h2 # variables

83 6.25e-2 4224
143 1.56e-2 22344
243 3.9e-3 111744
483 8.6e-4 889344

Grid a M ‖δA‖ ‖δφ‖ ‖∇ · A‖ ‖δĴ‖

83 4 2.2 2.6e-1 2.9e-1 1.0e-1 9.2e-2 8.6e-3 7.8e-1 9.2e-2
143 0.5 6 3.9e-1 3.9e-2 3.8e-2 4.6e-3 6.8e-3 6.3e-4 1.8e-1 1.7e-2
243 8 7.8e-2 7.2e-3 8.8e-3 2.3e-3 2.4e-3 1.6e-4 4.3e-2 3.5e-3
483 21 1.5e-2 1.7e-3 6.3e-3 1.8e-3 5.3e-4 4.1e-5 8.7e-3 8.5e-4

83 4 2.2 2.6e-1 3.3e-1 1.3e-1 4.8e-2 4.6e-3 7.5e-1 8.8e-2
143 1.0 6 3.9e-1 3.9e-2 4.1e-2 5.0e-3 3.6e-3 3.3e-4 1.9e-1 1.7e-2
243 8 7.8e-2 7.2e-3 8.9e-3 2.0e-3 1.3e-3 8.3e-5 4.4e-2 3.4e-3
483 23 1.5e-2 1.7e-3 3.8e-3 1.0e-3 2.8e-4 2.1e-5 8.7e-3 7.8e-4

83 10 3.4 3.2e-1 4.2 2.6 5.9e-2 4.2e-3 2.8e-1 2.6e-2
143 10 13 2.8e-1 2.9e-2 2.6e-1 1.2e-1 3.2e-3 2.6e-4 9.6e-2 6.9e-3
243 27 6.0e-2 5.8e-3 4.7e-2 1.3e-2 1.3e-3 7.2e-5 2.0e-2 1.2e-3
483 31 1.4e-2 1.7e-3 1.5e-2 3.9e-3 3.3e-4 1.8e-5 4.2e-3 2.8e-4

83 8 16 2.3 20 5.6 2.4e-1 3.0e-2 2.3e-1 2.2e-1
143 100 13 9.0 8.3e-1 23 5.6 3.0e-1 3.4e-2 4.8e-1 3.1e-2
243 21 2.2 2.1e-1 2.2 2.9e-1 4.4e-1 2.3e-2 1.e-1 8.4e-3
483 32 6.0e-1 5.7e-2 5.8e-1 9.1e-2 1.4e-1 1.0e-2 3.3e-2 2.3e-3

Note.The valueM is the number of iterations to convergence. Numbers in the left columns are measured in
‖ · ‖∞, and in the right columns in‖ · ‖2. The number of cells, the mesh spacingh in the central region [−.5, .5],
and the number of unknown variables are provided at the top.

method becomes superior. Fora= 100, the method of [1] necessitates grid spacing that
resolves the layers in ˆσ accurately before the solution error becomes adequately small. No
such high resolution grid is necessary for the discretization (14).

5.2. A Geophysical Test Problem

As a final test of our method, we compute the electric field at the surface of the earth due
to an incident plane wave. This is a basic computation required in a magnetotelluric (MT)
experiment [22]. The frequency is 103 Hz and we make the quasi-static assumption as in [1].
The conductivity structure is a block of high conductivity (10 S/m) in a low conductivity
background (0.01 S/m). The BCs (22) are applied, withg(x, y, 1000)= (1, 0, 0)T and
g(x, y,−1000)= (0, 0, 0)T . Thus, there is no source currentJs and the fields are driven by
the vertically incident plane wave. The goal is to find the electric field at the surface of the
earth for the given frequency. The conductivity model is plotted in Fig. 6.

We solve the forward modeling problem using an exponentially increasing grid, as in
the second experiment of Section 5.1. Contour plots of the three components of the electric
field are presented in Fig. 7. The solution is obtained in 22 iterations. From solving the
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FIG. 6. MT problem: a horizontal and a vertical cross-section of log10σ .

FIG. 7. MT problem: contour plots of the computed solutionRe(E) at the air-earth interface (E is scaled so
thatE(x, y, z= 2000)= (1, 0, 0)T ).
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problem on a large domain with various non-uniform grids, we observe that the number of
iterations does not change significantly as long asωµ|σ̂ |h¿ 1, whereh is the maximum
grid spacing. This condition essentially ensures that the dominant differential terms in (19)
remain dominant after discretization. In turn, the discrete system retains diagonal dominance
as a consequence of the above bound.

The MT problem considered here does not admit a closed form solution. To verify
our solution, we computed the solution again using another code [22],4 which solves the
first-order system of Maxwell’s equations (1a, 1b) directly, with BCs imposed onE. The
discrepancies between the two results are less than 5%. The results deviate most on the
edges and corners of the block of high conductivity. This is expected due to the differences
in BCs applied in the two codes, as well as errors due to discretization and interpolation.

When the frequencyω is increased, the diagonal blocks in (18) eventually lose their
dominance. Correspondingly, the block ILU preconditioner loses efficiency. We have found
an ILU-decomposition with a threshold applied to the entire system (18) to be a more robust
preconditioner in such circumstances.
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